Assessment of turbulent heat flux models for URANS simulations of turbulent buoyant flows in ROCOM tests
نویسندگان
چکیده
Turbulent mixing in buoyant flows is an essential mechanism involved many scenarios related to nuclear safety power plants. Comprehensive understanding and accurate predictions of turbulent the reactor are crucial importance, due function mitigating potential detrimental consequences during postulated accidents. The present study uses URANS methodology investigate buoyancy-influenced pressure vessel under main steam line break accident scenarios. With a particular focus on influence heat flux closure models, various combinations two turbulence models three utilized for numerical simulations ROCOM tests which have different characteristic features terms flow rate fluid density difference between loops. simulation results compared with experimental measurements so-called scalar downcomer at core inlet. shows that anisotropic able improve accuracy conditions strong buoyancy whilst weak case, major role played by selected essentially negligible models.
منابع مشابه
Assessment of Turbulent Models in Computation of Strongly Curved Open Channel Flows
Several rigorous turbulent models have been developed in the past years and it can be seen that more research is needed to reach a better understanding of their generality and precision by verifying their applications for distinct hydraulic phenomena; under certain assumptions. This survey evaluates the performance of Standard k-ε, Realizable k-ε, RNG k-ε, k-ω and RSM models in predicting flow ...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملComparison of Turbulent Particle Dispersion Models in Turbulent Shear Flows
This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993)), in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and...
متن کاملLarge numerical simulations of turbulent rotating flows
Scientific context Rotation, as measured by the Rossby number (the ratio of the rotation period to the eddy turn over time) is present in astroand geophysics. For example, the high Reynolds number large scales of atmospheric and oceanic flows are affected by the rotation of the Earth; the Rossby number Ro = U0/[L0Ω] for mid-latitude atmospheric synoptic scales is Ro ≈ 0.1 whereas in the solar c...
متن کاملHigh performance Python for direct numerical simulations of turbulent flows
Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly match...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Engineering and Technology
سال: 2022
ISSN: ['1738-5733', '2234-358X']
DOI: https://doi.org/10.1016/j.net.2022.07.009